Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612770

RESUMO

This study utilized a fluidized bed reactor (FBR) for fluoride removal from high-concentration fluoride-ion-containing simulated semiconductor industry wastewater and recovered high-purity CaF2 crystals. The effects of hydraulic retention time (HRT), pH, Ca2+ to F- ratio, upflow velocity, seed size and seed bed height were investigated by performing lab-scale batch experiments. Considering fluoride removal and CaF2 crystallization efficiency, 5 h HRT, pH 6, seed height of 50 cm and [Ca2+]/[F-] ratio of 0.55 (mol/mol) were found to be optimum. The effect of the interaction between the important process parameters on fluoride removal was further analyzed using response surface methodology (RSM) experimental design. The results showed that all the individual parameters have a significant impact (p = 0.0001) on fluoride removal. SEM-EDX and FTIR analysis showed the composition of the crystals formed inside FBR. HR-XRD analysis confirmed that the crystalline structure of samples was mainly CaF2. The results clearly demonstrated the feasibility of silica seed material containing FBR for efficient removal and recovery of fluoride as high-purity calcium fluoride crystals.


Assuntos
Fluoreto de Cálcio , Fluoretos , Águas Residuárias , Cristalização , Semicondutores
2.
J Dent ; 143: 104906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428715

RESUMO

OBJECTIVE: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. METHODS: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). RESULTS: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). CONCLUSIONS: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release. CLINICAL SIGNIFICANCE: Novel composites containing fluoride-doped calcium phosphates may be promising to modulate bacteria growth, promote remineralisation and reduce the risk of cytotoxicity related to monomers' elution.


Assuntos
Fluoretos , Fosfatos , Fosfatos/farmacologia , Fosfatos/química , Fluoretos/farmacologia , Fluoretos/química , Teste de Materiais , Resinas Compostas/farmacologia , Resinas Compostas/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Fluoreto de Cálcio , Antibacterianos/farmacologia
3.
Waste Manag ; 179: 110-119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471249

RESUMO

Toxic substances, like fluoride salts present in spent cathode carbon (SCC), have been a great risk to the environment and public health. Our approach involves alkali leaching to eliminate soluble fluoride, followed by microwave hydrothermal acid leaching to efficiently remove insoluble CaF2 from SCC. The optimized conditions, including a temperature of 353 K, a solid-liquid ratio of 1:20, and a 60-minute reaction time, resulted in an impressive 95.6 % removal of fluoride from SCC. Various characterization techniques were employed to analyze the composition, micro-morphology, and elemental content of the materials before and after the leaching process. Furthermore, critical process parameters on the leaching separation of insoluble CaF2 during microwave hydrothermal acid leaching were systematically investigated. The study removal mechanism revealed the transformation of insoluble CaF2 in the process of microwave oxidation insertion-hydrothermal acid leaching for SCC. The kinetic characteristics of the two-stage leaching process of CaF2 at different temperatures were analyzed according to the shrinkage kernel model. The results indicate that the two-stage leaching process of CaF2 is affected by mixing control and by diffusion control, severally. The expansion of the graphite flake layer of SCC through oxidative intercalation was identified as a critical process for the thorough removal of CaF2. Microwave hydrothermal acid leaching demonstrated a 17 % improvement over traditional hydrothermal acid leaching within the same reaction time, showcasing a noteworthy enhancement in fluoride removal. Consequently, the microwave oxidizing intercalation-hydrothermal acid leaching treatment of SCC, as explored in this study, offers an effective approach for achieving deep defluoridation of SCC.


Assuntos
Alumínio , Fluoreto de Cálcio , Ácidos Sulfúricos , Carbono , Fluoretos , Micro-Ondas
4.
Environ Sci Technol ; 58(9): 4450-4458, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386650

RESUMO

Calcium salt precipitation is an effective solution to wastewater fluoride pollution. The purity and precipitation efficiency of calcium fluoride is critical for its removal and recovery. This study aimed to reveal the role of coexisting sulfates in the precipitation of calcium fluoride. A low sulfate concentration promoted calcium fluoride precipitation. The size of calcium fluoride-aggregated particle clusters increased from 750 to 2000 nm when the molar ratio of sulfate to fluoride was increased from 0 to 3:100. Sulfate doped in the calcium fluoride crystals neutralized the positive charge of the calcium fluoride. Online atomic force microscopy measurements showed that sulfate reduced the repulsive force between calcium fluoride crystals and increased the adhesion force from 1.62 to 2.46 nN, promoting the agglomeration of calcium fluoride crystals. Sulfate improved the precipitation efficiency of calcium fluoride by promoting agglomeration; however, the purity of calcium fluoride was reduced by doping. Sulfate reduced the induction time of calcium fluoride crystallization and improved the nucleation rate of calcium fluoride. Sulfate should be retained to improve the precipitation of calcium fluoride and to avoid its loss from the effluents. However, it is necessary to separate sulfate from fluoride to obtain high-purity calcium fluoride. Therefore, sulfate concentration regulation in high-fluoride wastewater is key to achieving the efficient removal and recovery of fluoride ions.


Assuntos
Fluoreto de Cálcio , Fluoretos , Fluoretos/química , Águas Residuárias , Sulfatos/química , Poluição Ambiental , Cálcio
5.
J Mech Behav Biomed Mater ; 151: 106364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183747

RESUMO

Hydroxyapatite (HA) is a non-bioceramic commonly used in human implants in the form of coatings, which are limited in their application by mechanical and wear resistance properties, as well as biodegradability. In this study, fluorine substituted hydroxyapatite (FHA) coatings were prepared on Ti-6Al-4V surfaces by plasma spraying method using a mixture of calcium fluoride and hydroxyapatite powders. The prepared coatings were characterized by X-ray diffraction and fourier transform infrared (FTIR) spectroscopy at different levels of calcium fluoride (3 wt%, 6 wt%, 9 wt%, and 12 wt%). The biocompatibility of the coatings was evaluated by in vitro mineralization experiments. Experimental results showed that at 9 wt% of calcium fluoride, the prepared FHA coatings had better mechanical properties, with improved bond strength (28.2 MPa). The X-ray diffraction patterns of the coatings reflect the fluorine substitution during the spraying process and the 9FHA has the highest crystallinity according to the XRD analysis, which is closely related to the biological activity of the coating. In addition, Potentiodynamic polarisation showed that the sample coated with the 9FHA coating had the highest Ecorr and lowest Icorr, indicating the best corrosion resistance. The FHA coating exhibits faster apatite deposition in simulated body fluid, and the efficiency of apatite deposition increases with the increase of CaF2.


Assuntos
Apatitas , Durapatita , Humanos , Durapatita/química , Apatitas/química , Flúor , Corrosão , Fluoreto de Cálcio , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Propriedades de Superfície , Titânio/química , Microscopia Eletrônica de Varredura , Difração de Raios X
6.
ACS Appl Mater Interfaces ; 16(1): 54-65, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117478

RESUMO

The debate over enzyme methods versus nonenzyme methods in the field of nanosensing has lasted for decades despite hundreds of published studies on this topic. In this study, we first present a comparative analysis of these methods using a reaction based on the CaF2/MnO2 nanocomposite (CM Nc) with dual-enzyme activity, presenting oxidase- and peroxidase-like activities. Uric acid (UA) is a byproduct of purine metabolism in the body, and abnormal levels can cause many diseases; hence, tracking the amount of UA in human serum is crucial. The enzyme method was established using uricase and CM Nc: UA produced H2O2 when catalyzed by uricase; H2O2 was then catalyzed into reactive oxygen species (ROS) by the peroxidase activity of the CM Nc; this ROS oxidized 3,3',5,5'-tetramethylbenzidine (TMB), which was oxidized into blue oxidized TMB (oxTMB). The nonenzyme method was built on the scavenging effect of UA on the ROS, which prevented the catalytic capability of CM Nc toward TMB and induced blue oxTMB fading. The results of further tests revealed the good selectivity of the enzyme method compared to the fast response of the nonenzyme method. Additionally, both methods were effective in determining the UA concentration in human serum. The two separate methods can also independently verify each other, increasing the accuracy of the detection results in accordance with the relatively independent detection principles. This research provided theoretical backing for the practical design of multienzyme nanozyme catalysts, which can facilitate the precise detection of UA in biochemical products.


Assuntos
Nanocompostos , Ácido Úrico , Humanos , Ácido Úrico/análise , Óxidos , Compostos de Manganês , Fluoreto de Cálcio , Urato Oxidase , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/análise , Antioxidantes , Peroxidases , Colorimetria/métodos
7.
BMC Complement Med Ther ; 23(1): 340, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752485

RESUMO

BACKGROUND: The development of new strategies to inhibit and/or treat osteoporosis as a chronic systemic disease is one of the most crucial topics. The present study aimed to investigate the simultaneous effects of calcium fluoride nanoparticles (CaF2 NPs) and lactobacillus reuteri ATCC PTA 6475 (L. reuteri) against osteoporosis in an ovariectomized rat model (OVX). METHODS: In this study, 18 matured Wistar female rats were randomly assigned into 6 groups, including control, OVX, sham, OVX + L. reuteri, OVX + CaF2 NPs, and OVX + L. reuteri + CaF2 NPs. We used OVX rats to simulate post-menopausal osteoporosis, and the treatments were begun two weeks before OVX and continued for four weeks. All groups' blood samples were collected, and serum biomarkers (estrogen, calcium, vitamin D3, and alkaline phosphatase (ALP)) were measured. The tibia and Femur lengths of all groups were measured. Histopathological slides of tibia, kidney, and liver tissues were analyzed using the Hematoxylin and Eosin staining method. RESULTS: Our results revealed that dietary supplementation of L. reuteri and CaF2 NPs in low doses for 6 weeks did not show adverse effects in kidney and liver tissues. The tibial and femoral lengths of OVX rats as well as the population of osteoblasts and osteocytes and newly generated osteoid in the tibia remarkably increased in the combination therapy group. Moreover, there was a significant increase in serum estrogen levels and a significant decrease in serum calcium and alkaline phosphatase levels in combination treatment groups compared to the OVX groups not receiving the diet. CONCLUSIONS: Our results suggest the favorable effects of the simultaneous supplementation of L. reuteri and CaF2 NP to reduce post-menopausal bone loss.


Assuntos
Limosilactobacillus reuteri , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Animais , Ratos , Humanos , Ratos Wistar , Fluoreto de Cálcio , Fosfatase Alcalina , Cálcio , Osteoporose/tratamento farmacológico , Estrogênios , Suplementos Nutricionais
8.
J Dent ; 138: 104731, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777085

RESUMO

OBJECTIVES: To investigate enamel remineralization and antimicrobial effect of sodium fluoride (NaF) varnish containing calcium strontium silicate (CSR). METHODS: CSR was synthesized by sol-gel process and incorporated in 5 % NaF varnish at three different concentrations (1 %, 2 %, and 4 % w/v). The treatment/control groups were: 1 % CSR+NaF, 2 % CSR+NaF, 4 % CSR+NaF, NaF, and no treatment. Strontium and fluoride release from the varnishes was evaluated. Sound enamel specimens (n = 6) were demineralized, varnish-treated, and subjected to remineralization cycle. Mineral density of enamel specimens was evaluated using micro-CT. Antimicrobial effect of the varnishes on Streptococcus mutans and Lactobacillus acidophilus biofilms was assessed using confocal laser scanning microscopy. The HGF-1 cytotoxicity of the varnishes was examined using CCK-8 assay. RESULTS: Both 2 % and 4 % CSR+NaF varnishes showed significantly higher F release and remineralization potential than NaF varnish (p < 0.05). Dead bacterial proportion of 4 % CSR+NaF varnish was significantly higher than NaF varnish (p < 0.05). The CFUs values of both S. mutans and L. acidophilus were significantly lower in 4 % CSR+NaF group than NaF group (p < 0.05). No significant difference in cell viability was observed among the groups (p > 0.05). CONCLUSIONS: Incorporation of 4 % CSR in a NaF varnish significantly enhanced its enamel remineralization and antimicrobial potential with no cytotoxic effect. CLINICAL SIGNIFICANCE: Dental caries is a major public health problem globally. The study highlights the great potential of CSR-doped NaF varnish as a novel anti-caries agent with synergistic remineralizing and antimicrobial properties to combat early enamel caries lesions in the general population.


Assuntos
Cárie Dentária , Fluoretos , Humanos , Fluoretos Tópicos/farmacologia , Fluoretos Tópicos/uso terapêutico , Cariostáticos/farmacologia , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Cálcio , Remineralização Dentária , Fluoreto de Sódio/farmacologia , Fluoreto de Sódio/uso terapêutico , Fluoreto de Cálcio , Silicatos/farmacologia
9.
Chemosphere ; 340: 139875, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611767

RESUMO

Semiconductor wastewater with high concentrations of fluoride and phosphate is an environmental issue that cannot be ignored. Moreover, the byproduct of recycled aggregates, concrete fines, cannot be reused in concrete manufacturing, which is a key issue to address for the sustainable development of the concrete industry. The objective of this study was to tackle the crucial environmental issues of these two industries by developing concrete fines as an alternative material to treat semiconductor wastewater. The chemical precipitation of calcium fluoride and hydroxyapatite in the presence of concrete fines was determined as the mechanism underpinning the removal of fluoride and phosphate in wastewater. Owing to the wide range of contaminant concentration and solution pH and the possibility of multi-stage treatment, the effects of the initial contaminant concentration (F: 100-1000 mg/L; P: 20-200 mg/L) and solution pH (pH: 2-7) on the removal reactions were determined. The highest F and P removal percentages were more than 99%, and the final F and P concentrations met the effluent standard (F: 15 mg/L, P: 1.3 mg/L). The removal reactions of F and P are generally in competition, and the removal of F has priority over the removal of P. The pseudo-second-order model can describe the kinetics of the removal reactions well. The formation of fluorapatite can reduce the F concentration below the concentration achievable by CaF2 precipitation alone. Furthermore, using the byproduct of recycled aggregates instead of conventional chemicals to treat semiconductor wastewater is promising in terms of reducing CO2 emissions, and prospective applications are discussed. This study can lead to the development of a sustainable and clean process for semiconductor wastewater treatment using byproducts from the concrete industry.


Assuntos
Fluoreto de Cálcio , Fluoretos , Águas Residuárias , Durapatita , Precipitação Química , Semicondutores
10.
Eur J Orthod ; 45(2): 122-132, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36049047

RESUMO

BACKGROUND: White spot lesions (WSLs) are the most common complications of fixed appliance orthodontic treatment. OBJECTIVES: To evaluate the effectiveness of calcium fluoride nanoparticles-containing orthodontic primer (nCaF2-primer) in preventing the incidence of WSLs during orthodontic treatment. TRIAL DESIGN: Single-centre, double-blinded, split-mouth, randomized clinical trial. METHODS: The sample involved 31 orthodontic patients (≥12 years). Participants were recruited using a simple nonstratified randomization. Data collection, measurements, and analysis were performed blindly. Outcome measures included comparing the effect of nCaF2-primer with control primer (Transbond) regarding the degree of demineralization (DIAGNOdent pen), Streptococcus mutans (S. mutans) bacterial counting [real-time polymerase chain reaction device (PCR)], and WSLs incidence (pre- and post-operative photographs). The measurements were performed before bonding, 1, 3, and 6 months after bonding and after appliance removal. A two-way repeated measure analysis of variance test (for DIAGNOdent pen scores), and Wilcoxon signed-rank test (for the difference between bacterial counting and WSLs incidence) were used (P < 0.05). RESULTS: Thirty-one patients were recruited and randomized (mean age 17.9 ± 2.45 years). For the primary outcome (DIAGNOdent pen scores) and secondary outcome of S. mutans counting: 31 patients (310 teeth for each group) were included in scoring at T1 and T3, and 30 patients (300 teeth) were included at T6. While for the photographic scores, 26 patients were included after bracket bonding. The demineralization scores showed significant differences at all-time intervals within the 6 months after bracket bonding which was more noticeable after the first month. There was a significant difference in bacterial count between the two primer groups at the T1 only. Regarding photographic scores, there were no significant differences in the WSLs incidence between the two primers groups after brackets removal. No harm was detected during treatment, except the usual pain/gingival irritation. CONCLUSIONS: nCaF2-primer effectively decreased demineralization scores within the 6 months after bracket bonding. Moreover, it significantly reduced S. mutans colonization after the first month. However, the tested primer did not have an extra advantage in preventing WSLs development at the clinical level after appliance removal. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov on 8 May 2021 (registration number: NCT04994314).


Assuntos
Cárie Dentária , Braquetes Ortodônticos , Desmineralização do Dente , Humanos , Adolescente , Adulto Jovem , Adulto , Fluoreto de Cálcio/uso terapêutico , Braquetes Ortodônticos/efeitos adversos , Aparelhos Ortodônticos Fixos/efeitos adversos , Boca , Desmineralização do Dente/etiologia , Desmineralização do Dente/prevenção & controle , Cárie Dentária/etiologia
11.
J Dent ; 126: 104312, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184005

RESUMO

OBJECTIVE: In most clinical circumstances, secondary caries at the margin of fixed dental restorations leads to restoration failure and replacement. Accordingly, the objectives of this study were to: (1) develop a novel rechargeable nano-calcium phosphate (NACP) and nano-calcium fluoride (nCaF2) resin-based cement; and (2) investigate their mechanical properties and calcium (Ca), phosphate (P), and fluoride (F) ion release, recharge, and re-release for the first time. METHODS: The cement matrix consisted of pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A-dimethacrylate (EBPADMA) was denoted PEHB. Four cements were fabricated: (1) PEHB+0%NACP+0%nCaF2 (experimental control); (2) PEHB+25%NACP+0%nCaF2, (3) PEHB+0%NACP+25%nCaF2; (4) PEHB+12.5%NACP+12.5% nCaF2. RelyX luting cement was used as a commercial control. Mechanical properties and long-term Ca, P, and F ion release, recharge, and re-release were evaluated. RESULTS: Adding 25% NACP, 25% nCaF2 and adding both 12.5% NACP and 12.5% nCaF2 to the cement matrix presented a significantly higher shear bond strength, flexural strength compared to the commercial control (p < 0.05) with a comparable outcome with no significant different (p > 0.05) compared to experimental control. The film thickness results of all cement groups met the ISO requirement (<50 µm). The resin cement group with both 12.5% NACP and 12.5% nCaF2 successfully released Ca, P, and F ions at 3.1 ± 0.01, 1.1 ± 0.05, and 0.51±0.01 mmol/L respectively. Moreover, it showed the ability to re-release Ca, P, and F ions at 0.62±0.01, 0.12±0.01, and 0.42±0.01 mmol/L respectively. CONCLUSIONS: The resin cement group with both 12.5% NACP and 12.5% nCaF2 demonstrated the advantages of both types of bio-interactive fillers as it could release a higher level of ions than the resin cement with 25%nCAF2 and exhibited a better rechargeability compared to the resin cement with 25%NACP. CLINICAL SIGNIFICANCE: The ability of this novel resin-based cement to release, recharge, and re-release Ca, P, and F ions could be one of the keys to lengthening the survivability of fixed dental restorations. These features could help to reduce the onset of secondary caries by enhancing the remineralization and preventing the demineralization of tooth structures.


Assuntos
Cárie Dentária , Cimentos de Resina , Humanos , Fluoretos , Fluoreto de Cálcio , Glicerol , Fosfatos de Cálcio/química , Metacrilatos/química , Cimentos Dentários/química , Materiais Dentários , Cárie Dentária/prevenção & controle , Biofilmes , Antibacterianos
12.
Sci Rep ; 12(1): 17612, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266387

RESUMO

Topical application of different fluoride preparations is considered to be the gold standard of oral prophylaxis measures in preventive dentistry. Hydroxyapatite nanoparticles (nano-HAP) as well, have received considerable attention for dental use in the past few decades. The purpose of this in-vitro study was to analyze the interaction between nano-HAP and different fluoride preparations. In order to investigate the possibility to establish, in the presence of nano-HAP, reproducible calcium fluoride surface layers, specimens were visually examined with regard to the surface coverage's structure, morphology, homogeneity and stability. Test series based on enamel and dentine specimens, that were obtained from extracted bovine teeth, were conducted. Thereby, sodium fluoride, olaflur, elmex Fluid (10.000 ppm) and an aqueous nano-HAP solution (5%) served as test products and sterile water as reference. First, single application of nano- HAP and fluoride was tested. After 5 min of incubation in the test solution, the surface coverage was examined by scanning electron microscopy (SEM). Furthermore, samples were determined by energy dispersive X-ray spectroscopy (EDX) to identify the present elements of the surface layer, particularly fluoride. To test the calcium fluoride layer's persistence and stability, samples were exposed to the spray of a dental multifunctional syringe for 20 s using maximum pressure and maximum water supply. In the second application protocol, fluoride and nano-HAP were applied simultaneously and in the third application protocol they were used sequentially. SEM visualisation showed that the simultaneous or sequential addition of nano-HAP led to a distinct change in the surface layer's structure. Agglomerates of various sizes were formed, with obviously different morphology from the calcium fluoride globules, not covering the surface homogeneously and sprayed off with the multifunctional syringe easily. Application of pure fluoride compounds resulted in a more homogeneous calcium fluoride surface layer with higher persistence in comparison to the combination of fluoride and nano-HAP. Interaction between fluoride and nano-HAP clearly could be proved. On enamel as well as dentine surfaces, the combined application of nano-HAP and fluoride has a negative effect on the stability and persistence of the calcium fluoride surface precipitate.


Assuntos
Fluoretos , Nanopartículas , Bovinos , Animais , Fluoretos/uso terapêutico , Durapatita/química , Fluoreto de Cálcio , Fluoreto de Sódio/uso terapêutico , Nanopartículas/uso terapêutico , Dentina , Água , Esmalte Dentário
13.
Adv Mater ; 34(43): e2205680, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36106691

RESUMO

The anticancer mechanism of nanozymes is dominantly associated with the capacity for generation of reactive oxygen species (ROS) caused by the valence change of metal elements. However, very little research is focused on and has achieved the exploration and development of enzyme-mimicking activities of valence-invariable metal compounds. Herein, a distinct valence-invariable calcium fluoride (CaF2 ) nanozyme with ultrasound (US)-enhanced peroxidase (POD)-mimicking activity is rationally designed and engineered for efficient calcium (Ca2+ )-overload-enhanced catalytic tumor nanotherapy, which is the first paradigm of Ca-based nanozymes for catalytic cancer treatment. The release of exogenous Ca2+ ions from CaF2 nanocrystals and deleterious ROS generation derived from US-amplified POD-mimicking properties facilitate intracellular Ca2+ accumulation and achieve Ca2+ -overload-induced mitochondrial dysfunction through introducing exogenous Ca2+ ions and regulating calcium-pumping channels of neoplastic cells. Especially, US as an exogenous energy input is capable of substantially amplifying POD-mimicking catalytic activities of CaF2 nanozyme, ultimately achieving efficient anti-neoplastic outcome on both 4T1 breast tumor and H22 hepatic carcinoma animal models. Such a discovery of enzyme-like activity of valence-invariable metal compounds can broaden the cognition scope of nanozymes and effectively serves the field of catalytic and chemoreactive nanomedicine.


Assuntos
Fluoreto de Cálcio , Neoplasias , Animais , Espécies Reativas de Oxigênio , Cálcio , Catálise , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Peroxidase , Peroxidases , Antioxidantes
14.
Aust Dent J ; 67(3): 271-280, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35694835

RESUMO

BACKGROUND: This study aimed to investigate the efficacy of three remineralizing agents on dental erosion in primary teeth. METHODS: Forty primary molars were randomly divided into four groups (n = 10 each): self-assembling peptide (P11-4 ), casein phosphopeptide-amorphous calcium fluoride phosphate (CPP-ACFP), sodium fluoride (NaF) and artificial saliva (AS; control). The erosion-like formation was created by immersing the samples in citric acid (4 × 2 min, pH 2.3) and AS (4 × 2 h, pH 7). The eroded samples were then treated with remineralizing agents and subjected to further erosion consisting of 15 cycles (3x/8-h interval) of immersion in citric acid and AS for 6 s each. Alterations in the mineral content and morphology of the samples were quantified using a microhardness tester and atomic force microscope. RESULTS: All agents had a significant remineralization effect on eroded primary tooth enamel. After further erosive challenge, enamel loss in the CPP-ACFP group was found to be significantly lower than in all other groups, and no significant difference was found between the P11-4 and NaF groups. CONCLUSIONS: This study showed that all tested materials had remineralization ability, and CPP-ACFP had a superior effect in inhibiting enamel loss due to dental erosion in primary teeth. © 2022 Australian Dental Association.


Assuntos
Caseínas , Remineralização Dentária , Austrália , Fluoreto de Cálcio , Fosfatos de Cálcio , Caseínas/farmacologia , Caseínas/uso terapêutico , Ácido Cítrico/efeitos adversos , Fluoretos/uso terapêutico , Humanos , Minerais , Fosfopeptídeos , Saliva Artificial , Fluoreto de Sódio/farmacologia , Fluoreto de Sódio/uso terapêutico , Dente Decíduo
15.
PLoS One ; 17(3): e0265451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286355

RESUMO

Fluoride contamination is a major problem in wastewater treatment. Metaettringite (which has previously shown enhanced anion adsorption) was investigated as a possible adsorbent to remove fluoride from low-concentration solution (25 mg-F/L). The fluoride removal properties of ettringite and metaettringite were first compared at pH 10, and metaettringite was found to be more effective. The dominant reaction mechanism for fluoride adsorption in metaettringite was found to be recrystallization of metaettringite by rehydration; this was accompanied by precipitation of calcium fluoride. The adsorption kinetics followed the pseudo-second order model. Metaettringite was also able to remove fluoride effectively in low pH environment (i.e., at pH 3.5). The influence of coexistence of sulfate ions in solution on the fluoride removal performance was investigated, and a small decrease in performance was noted. The residual fluoride concentrations obtained with higher doses of metaettringite were lower than those specified by the Japanese effluent standard (non-coastal areas: 8 mg-F/L; coastal areas: 15 mg-F/L). The fluoride removal capacity of metaettringite was compared with those of other solid materials. The observed maximum capacity was 174.7 mg-F/g-metaettringite. In the case of high fluoride concentration solution, the main removal mechanism will be changed to calcium fluoride precipitation. In general, metaettringite is regarded as promising material for fluoride removal in wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Fluoreto de Cálcio , Fluoretos/química , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
16.
Biomed Mater Eng ; 33(4): 325-335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35253727

RESUMO

BACKGROUND: Within the scope of minimally invasive dentistry, the use of different biocompatible remineralization agents on incisors affected by molar-incisor hypomineralization (MIH) gains importance. OBJECTIVE: To evaluate the effect of casein phosphopeptide amorphous calcium fluoride phosphate (CPP-ACFP) and calcium glycerophosphate (CaGP) in mineral density (MD) of white/creamy and yellow/brown demarcated opacities on incisors affected by MIH by means laser fluorescence (LF). METHODS: As a cross-over, randomized trial, twenty-two children with 167 incisors affected by MIH were recruited and randomly assigned to one of the two different agents and crossed over to other agents with two weeks washout in between. Incisors were examined by using LF at all before and after three months periods. RESULTS: The results of the paired t-tests for determining the period effect between the baseline findings showed significant difference in white/creamy and yellow/brown demarcated opacities of LF values for both groups (p < 0.05). The difference between both groups according to after categorization of 20% increasing in MD in the percent of change before and after application on LF values; was not found statistically significant in white/creamy (p = 0.970) and yellow/brown (p = 0.948) opacities. CONCLUSIONS: The primary outcome was CPP-ACFP and CaGP had a positive effect in decreasing hypomineralization on MIH-affected enamel for three months period.


Assuntos
Caseínas , Incisivo , Fluoreto de Cálcio , Criança , Fluoretos , Glicerofosfatos , Humanos , Fosfopeptídeos
17.
Chemosphere ; 295: 133955, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35157876

RESUMO

In this study, the anaerobic quartz sand fixed biofilm reactor containing Cupriavidus sp. W12 was established to simultaneously remove calcium (Ca2+), fluoride (F-) and nitrate (NO3-N) from groundwater. After 84 days of continuous operation, the optimum operating parameters and defluoridation mechanism were explored, and the microbial community structure under different pH environments were compared and analyzed. Under the optimal operation conditions (HRT of 6 h, initial Ca2+ concentration of 180 mg L-1, and pH of 7.0), the removal efficiencies of Ca2+, F-, and NO3-N were 58.97%, 91.93%, and 100%, respectively. Gas chromatography (GC) results indicate that N2 is the main gas produced by the bioreactor. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) showed that extracellular polymers (EPS) are produced during bacterial growth and metabolism. The results of Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR) demonstrated that the defluoridation mechanism is attributed to the synergetic effects of ion exchange, co-precipitation, and chemisorption. The comparative analysis of the microbial community structure under different pH conditions show that Cupriavidus is the dominant bacteria in the bioreactor throughout the experiment, and it shows a prominent advantage at pH of 7.0. This research provides an application foundation for anaerobic microbial induced calcium precipitation (MICP) bioremediation of Ca2+, F-, and NO3-N from groundwater.


Assuntos
Cupriavidus , Água Subterrânea , Anaerobiose , Biofilmes , Reatores Biológicos , Cálcio , Fluoreto de Cálcio , Desnitrificação , Fluoretos , Nitratos
18.
Dent Mater ; 38(2): 397-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974900

RESUMO

OBJECTIVES: Composite restorations with calcium fluoride nanoparticles (nCaF2) can remineralize tooth structure through F and Ca ion release. However, the persistence of ion release is limited. The objectives for this study were to achieve long-term remineralization by developing a rechargeable nCaF2 nanocomposite and investigating the F and Ca recharge and re-release capabilities. METHODS: Three nCaF2 nanocomposites were formulated: (1) BT-nCaF2:Bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA); (2) PE-nCaF2:Pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA); (3) BTM-nCaF2:BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (Bis-MEP). All formulations contained 15% nCaF2 and 55% glass particles. Initial flexural strength and elastic modulus, F and Ca ion release, recharge and re-release were tested and compared to three commercial fluoride-containing materials. RESULTS: BT and BTM nCaF2 composites were 3-4 times stronger and had elastic modulus 2 times that of resin-modified glass ionomer controls. PE-nCaF2 had comparable strength to RMGIs. All nCaF2 composites had significant F and Ca ion release and ion rechargeability. In F and Ca recharging cycles, PE-nCaF2 had the highest ion recharging capability among nCaF2 groups, followed by BT-nCaF2 and BTM-nCaF2 (p < 0.05). For all recharge cycles, ion release maintained similar levels, demonstrating long-term ion release was possible. Furthermore, after the final recharge cycle, nCaF2 nanocomposites provided continuous ion release for 42 days without further recharge. SIGNIFICANCE: Novel nCaF2 rechargeable nanocomposites exhibited significant F and Ca ion release over multiple recharge cycles, demonstrating continuous long-term ion release. These nanocomposites are promising restorations with lasting remineralization potential.


Assuntos
Fluoreto de Cálcio , Nanocompostos , Fosfatos de Cálcio/química , Resinas Compostas/química , Resistência à Flexão , Fluoretos , Teste de Materiais , Nanocompostos/química
19.
ACS Appl Mater Interfaces ; 14(4): 5586-5597, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050587

RESUMO

It is vital to remove residual tumor cells after resection to avoid the recurrence and metastasis of osteosarcoma. In this study, a mineral nanomedicine, europium-doped calcium fluoride (CaF2:Eu) nanoparticles (NPs), is developed to enhance the efficacy of adjuvant radiotherapy (i.e., surgical resection followed by radiotherapy) for tumor cell growth and metastasis of osteosarcoma. In vitro studies show that CaF2:Eu NPs (200 µg/mL) exert osteosarcoma cell (143B)-selective toxicity and migration-inhibiting effects at a Eu dopant amount of 2.95 atomic weight percentage. These effects are further enhanced under X-ray irradiation (6 MeV, 4 Gy). Furthermore, in vivo tests show that intraosseous injection of CaF2:Eu NPs and X-ray irradiation have satisfactory therapeutic efficacy in controlling primary tumor size and inhibiting primary tumor metastasis. Overall, our results suggest that CaF2:Eu NPs with their osteosarcoma cell (143B)-selective toxicity and migration-inhibiting effects combined with radiotherapy might be nanomedicines for treating osteosarcoma after tumor resection.


Assuntos
Antineoplásicos/uso terapêutico , Fluoreto de Cálcio/uso terapêutico , Európio/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Fluoreto de Cálcio/química , Fluoreto de Cálcio/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Európio/química , Európio/toxicidade , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Radioterapia Adjuvante
20.
J Hazard Mater ; 428: 128102, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030488

RESUMO

Fluoride (F-) and calcium (Ca2+) are primary causes of skeleton fluorosis and scaling, posing a grievous threat to aquatic lives and public health. Therefore, a novel strategy for polluted groundwater in immobilized biofilm reactor based on the anaerobic microbial induced calcium precipitation (MICP) was proposed, in which loofah was used as a multifunctional strain Cupriavidus sp. W12 growth carrier. Effects of different hydraulic retention time (HRT), initial F-concentration, and pH on the synchronous removal of pollutants were examined. Under stable operation conditions, the highest efficiencies for Ca2+, F-, and nitrate (NO3--N) reached 76.73%, 94.92%, and 100%, respectively. Furthermore, gas chromatography (GC), Fluorescence excitation-emission matrix (EEM), X-ray diffraction (XRD), Scanning electron microscope-energy dispersive spectroscope (SEM-EDS), and Fourier transform infrared spectrometer (FTIR) comprehensively clarified the mechanism of pollutants removal. The results elucidated that the removal of various pollutants was achieved through a combination of anaerobic MICP, adsorption, and co-precipitation. Besides, high-throughput sequencing analysis showed that Cupriavidus had a predominant proportion of 42.36% in the reactor and had stability against pH impact. As the first application of a biofilm reactor based on anaerobic MICP, it put forward a new insight for efficient defluorination and decalcification.


Assuntos
Fluoretos , Nitratos , Anaerobiose , Biofilmes , Reatores Biológicos , Cálcio , Fluoreto de Cálcio , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...